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1 A Taste of Bivariate Generating Functions

Let P be a combinatorial class of permutations.

P = Set(DCyclabelled(Z))− Sequnlabelled(Z)

So

P (x) = exp

(
log

(
1

1− x

))
=

1

1− x

Let’s restrict: Let A,B be subsets of Z≥0 Let P(A,b) be the class of permu-
tations with cycle lengths in A and the number of cycles in B

P(A,b) = SetB (DCycA (Z))

So

P (x) =
∑
b∈B

1

b!

(∑
a∈A

xa

a

)b

An important special instance of this is in permutations consisting of exactly
r cycles, P(Z≥0,r). So

P (Z≥0,r)(x) =
1

r!

(
log

1

1− x

)r
Definition. The number of permutations of n with exactly r cycles is[

n
k

]
=
n!

r!
[xn]

(
log

1

1− x

)r
these are called Stirling numbers of the first kind.
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Now suppose we want to know how many cycles are in a random permu-
tation. By random, we mean that among all permutations of size n, each
is equally likely. Thus the probability that a random permutation of size n

has k cycles is pn,k = 1
n!

[
n
r

]
.

For n = 100:

k 1 2 3 4 5 6 7 8 9 10

pn,k 0.01 0.05 0.12 0.19 0.21 0.17 0.11 0.06 0.03 0.01

But how does the expected number of cycles grow as n grows? We can
answer this with bivariate generating functions.

Define

P (x, y) =
∑
σ∈P

x|σ|

|σ|! y
(#cyclesofσ)

=
∞∑
n=0

∞∑
k=0

[
n
k

]
xn

n!
yk

=
∞∑
r=0

P (Z≥0,r)(x)yr

(Note: this generating function is an exponential generation function in x,
but an ordinary generating function in y)

=

∞∑
r=0

1

r!

(
log

1

1− x

)r
yr

= exp

(
y log

1

1− x

)
= exp

(
log

(
1

1− x

)y)
= (1− x)−y

which is nice enough that we can usefully manipulate it.
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Now, the expected number of cycles in a permutation of n is
(recall

∑
xP (X = x))

En =
∞∑
r=0

rpn,r

Now
[xn]P (x, y) = [xn](1− x)−y

= (−1)n
(
−y
n

)
=

(−1)n(−y)(−y − 1) · · · (−y − n+ 1)

n!

=
y(y + 1) · · · (y + n− 1)

n!

As well:

[xn]P (x, y) =
∞∑
r=0

[
n
r

]
yr

n!

=
∞∑
r=0

pn,ry
r

So take a derivative, and set y = 1.

En =
∞∑
r=0

rpn,r =
n−1∑
i=0

(y) · · · (y + i− 1)(1)(y + i+ 1) · · · (y + n− 1)

n!

∣∣∣∣∣
y=1

=
n−1∑
i=0

1(2) · · · (i)(1)(i+ 2) · · · (n)

n!

=

n−1∑
i=0

1

i+ 1
=

n∑
i=1

1

i

In general, En ∼ log n as n→∞.

References. Flajolet and Sedgewick, Analytic Combinatorics, Cambridge
(2009). II.4.
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2 Introduction to Asymptotic Analysis

Definition. Let (an)∞n=0, (bn)∞n=0 be sequences. Then we write an ∼ bn as
n→∞ to mean

lim
n→∞

an
bn

= 1

We say an and bn are asymptotically equal.

Often, you’ll find an ∼ cρnPoly(n).

Definition. Let (an)∞n=0, (bn)∞n=0 be sequences. Then we write an ./ bn as
n→∞ to mean

lim sup
n→∞

a
1
n
n = lim sup

n→∞
b

1
n
n

and we say (an) and (bn) have the same exponential growth.

Example. Say an = αn(1 + f(n)) where f(n) ≥ 0 and f(n) grows strictly
slower than any exponential i.e.

lim
f(n)

βn
→ 0 ∀β>0

Then an ./ α
n since

a
1
n
n = α(1 + f(n))

1
n ⇒ (αn)

1
n = α

Suppose (1 + f(n))
1
n ≥ c > 1 infinitely often. Then 1 + f(n) ≥ cn So

1 + f(n)

cn
> 1

Which is a contradiction. So

lim
n→∞

(1 + f(n))
1
n = 1⇒ lim sup

n→∞
a

1
n
n = α = lim sup

n→∞
(αn)

1
n ⇒ an ./ α

n

Definition. Let Ω be a connected open subset of C. A function f : Ω→ f
is analytic at a point z0 ∈ Ω if for some open disc centered at z0 and within
Ω, f(a) is represented with a convergent power series. We say f is analytic
in Ω if it is analytic at every z0 ∈ Ω.
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Definition. Let Ω be a connected open subset of C. A function f : Ω→ C
is holomorphic at z0 ∈ Ω if

lim
δ→0

f(z0 + δ)− f(z0)

δ

exists independently of the path δ takes to 0. This will be f ′(z0).
f is holomorphic on Ω if it is holomorphic at every point of Ω.

Theorem. Let Ω be as described, and f : Ω → C. Then f is holomorphic
on Ω if and only if f is analytic on Ω. And if so, then f is smooth on Ω (i.e.
all its derivatives exist).

Definition. Let Ω be a connected open subset of C. Let f : Ω → C be
analytic on Ω and let z0 be a point on the boundary of Ω. If there exists an
analytic function g on a connected open set Ω′ such that z0 ∈ Ω′ and f = g
on the intersection Ω ∩ Ω′, then we say g is an analytic continuation of f .

z0

Ω
Ω′

Fig. 1

Theorem. The analytic continuation of an analytic function is unique.

Defintion. Let Ω be a connected open subset of C, and f : Ω → C be
analytic. A point z0 on the boundary of Ω is a singularity of f if f is not
analytically continuable at z0.

The only singularities we are going to care about are the ones on the circle
of convergence of power series with nonnegative coefficients.

Theorem(Pringsheim′s). Let f(z) be analytic at zero with a series expan-
sion

f(z) =

∞∑
n=0

fnz
n

Suppose each fi ≥ 0 and the series has radius of convergence 0 < R < ∞,
Then z = R is a singularity of f(z) and no singularity with smaller norm
exists.
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Intuition. A real and positive x is no smaller than an x not on the real
axis, but with the same norm.

|x|

f1x
f2x

2 f3x
3

Fig. 2

Proof . The series has radius R and matches the function, so there are
no singularities of norm < R. Suppose on the contrary that f is analytic at
R = z. Then f is analytic in a disc of radius r centered at z = R. Choose
0 < h < 1

3r and consider the expansion of f around R− h

r

Fig. 3

R− h
R

f(z) =
∑
m≥0

gm(z − z0)m

In the intersection of circles

∞∑
n=0

fnz
n =

∞∑
m=0

gm(z − z0)m

pull out gm by taking m derivatives at z0, and get

gm =

∞∑
n=0

(
n
m

)
fnz

n−m
0

and so the gm are also nonnegative.
Now f(z) =

∑
m≥0

gm(z − z0)m converges at R+ h by choice of h. So

f(R+ h) =

∞∑
m=0

( ∞∑
n=0

(
n
m

)
fnz

n−m
0

)
(2h)m

this is a convergent series with all nonnegative terms.
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We can rearrange to get

f(R+ h) =
∞∑
n=0

fn

( ∞∑
m=0

(
n
m

)
zn−m0 (2h)m

)

=

∞∑
n=0

fn(z0 + 2h)n

where z0 + 2h = R + h, contradicting that the series has radius of conver-
gence of R. �

Definition. Singularities on the boundary of the disc of convergence of a
power series are called dominant singularities.

Example. Consider the binary rooted tree with distinct left and right childre
from the first day. T = E + Z × Z2.

So T (x) = 1 + xT (x)2, so T (x) = 1−
√
1−4x
2x .

What is a dominant singularity? At x = 1
4 , when the square root is about to

be negative. By Pringsheim, we only need to look at real possible x values.
So x = 1

4 is a real dominant singularity and 1
4 is the radius of convergence.

The First Principle of Combinatorial Asymptotics
The radius of convergence, or position of dominant singularity on R>0, de-
termines the exponential growth.

This is encapsulated in the following:

Proposition. Let f(z) be analytic at 0 with the series expansion

f(z) =
∞∑
n=0

fnz
n, with the fi ≥ 0 and radius of convergence 0 < R < ∞.

Then fn ./

(
1

r

)n
.

Proof . By definition of radius of convergence, ∀ε>0,
∞∑
n=0

fn(R− ε)n con-

verges. So in particular, fn(R − ε)n → 0 as n → ∞, and in particular
fn(R− ε)n<1 for n sufficiently large.

fn<
1

(R− ε)n

for n sufficiently large. Thus,

f
1
n
n <

1

R− ε
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In the other direction, fn(R+ε)n is unbounded since
∑
fn(R+ε)n is strictly

outside the radius of convergence. So

fn(R+ ε)n>1

fn>
1

(R+ ε)n

f
1
n
n >

1

R+ ε

infinitely often. Therefore,

lim sup f
1
n
n =

1

R+ ε

so

fn ./

(
1

R

)n
�

Example. Take T from the previous example. T (x) = 1−
√
1−4x
2x .

The dominant singularity on R>0 is x = 1
4 , so tn ./ 4n.

References. Flajolet and Sedgewick, Analytic Combinatorics, Cambridge
(2009). IV.2, IV.3.
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