Math 821, Spring 2013, Lecture 5

Karen Yeats
(Scribe: Avery Beardmore)

January 29, 2013

1 A Taste of Bivariate Generating Functions

Let \mathcal{P} be a combinatorial class of permutations.

$$
\mathcal{P}=\operatorname{Set}\left(D C y c_{\text {labelled }}(\mathcal{Z})\right)-\operatorname{Seq}_{\text {unlabelled }}(\mathcal{Z})
$$

So

$$
P(x)=\exp \left(\log \left(\frac{1}{1-x}\right)\right)=\frac{1}{1-x}
$$

Let's restrict: Let A, B be subsets of $\mathbb{Z}_{\geq 0}$ Let $\mathcal{P}^{(A, b)}$ be the class of permutations with cycle lengths in A and the number of cycles in B

$$
\mathcal{P}^{(A, b)}=\operatorname{Set}_{B}\left(D C y c_{A}(\mathcal{Z})\right)
$$

So

$$
P(x)=\sum_{b \in B} \frac{1}{b!}\left(\sum_{a \in A} \frac{x^{a}}{a}\right)^{b}
$$

An important special instance of this is in permutations consisting of exactly r cycles, $\mathcal{P}^{\left(\mathbb{Z}_{\geq 0}, r\right)}$. So

$$
P^{\left(\mathbb{Z}_{\geq 0}, r\right)}(x)=\frac{1}{r!}\left(\log \frac{1}{1-x}\right)^{r}
$$

Definition. The number of permutations of n with exactly r cycles is

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]=\frac{n!}{r!}\left[x^{n}\right]\left(\log \frac{1}{1-x}\right)^{r}
$$

these are called Stirling numbers of the first kind.

Now suppose we want to know how many cycles are in a random permutation. By random, we mean that among all permutations of size n, each is equally likely. Thus the probability that a random permutation of size n has k cycles is $p_{n, k}=\frac{1}{n!}\left[\begin{array}{l}n \\ r\end{array}\right]$.

For $\mathrm{n}=100$:

k	1	2	3	4	5	6	7	8	9	10
$p_{n, k}$	0.01	0.05	0.12	0.19	0.21	0.17	0.11	0.06	0.03	0.01

But how does the expected number of cycles grow as n grows? We can answer this with bivariate generating functions.

Define

$$
\begin{gathered}
P(x, y)=\sum_{\sigma \in \mathcal{P}} \frac{x^{|\sigma|}}{|\sigma|!} y^{(\# \text { cyclesof } \sigma)} \\
=\sum_{n=0}^{\infty} \sum_{k=0}^{\infty}\left[\begin{array}{c}
n \\
k
\end{array}\right] \frac{x^{n}}{n!} y^{k} \\
=\sum_{r=0}^{\infty} P^{\left(\mathbb{Z}_{\geq 0}, r\right)}(x) y^{r}
\end{gathered}
$$

(Note: this generating function is an exponential generation function in x , but an ordinary generating function in y)

$$
\begin{gathered}
=\sum_{r=0}^{\infty} \frac{1}{r!}\left(\log \frac{1}{1-x}\right)^{r} y^{r} \\
=\exp \left(y \log \frac{1}{1-x}\right) \\
=\exp \left(\log \left(\frac{1}{1-x}\right)^{y}\right) \\
=(1-x)^{-y}
\end{gathered}
$$

which is nice enough that we can usefully manipulate it.

Now, the expected number of cycles in a permutation of n is (recall $\left.\sum x P(X=x)\right)$

$$
E_{n}=\sum_{r=0}^{\infty} r p_{n, r}
$$

Now

$$
\begin{gathered}
{\left[x^{n}\right] P(x, y)=\left[x^{n}\right](1-x)^{-y}} \\
=(-1)^{n}\binom{-y}{n} \\
=\frac{(-1)^{n}(-y)(-y-1) \cdots(-y-n+1)}{n!} \\
=\frac{y(y+1) \cdots(y+n-1)}{n!}
\end{gathered}
$$

As well:

$$
\begin{gathered}
{\left[x^{n}\right] P(x, y)=\sum_{r=0}^{\infty}\left[\begin{array}{l}
n \\
r
\end{array}\right] \frac{y^{r}}{n!}} \\
=\sum_{r=0}^{\infty} p_{n, r} y^{r}
\end{gathered}
$$

So take a derivative, and set $\mathrm{y}=1$.

$$
\begin{gathered}
E_{n}=\sum_{r=0}^{\infty} r p_{n, r}=\left.\sum_{i=0}^{n-1} \frac{(y) \cdots(y+i-1)(1)(y+i+1) \cdots(y+n-1)}{n!}\right|_{y=1} \\
=\sum_{i=0}^{n-1} \frac{1(2) \cdots(i)(1)(i+2) \cdots(n)}{n!} \\
=\sum_{i=0}^{n-1} \frac{1}{i+1}=\sum_{i=1}^{n} \frac{1}{i}
\end{gathered}
$$

In general, $E_{n} \sim \log n$ as $n \rightarrow \infty$.
References. Flajolet and Sedgewick, Analytic Combinatorics, Cambridge (2009). II.4.

2 Introduction to Asymptotic Analysis

Definition. Let $\left(a_{n}\right)_{n=0}^{\infty},\left(b_{n}\right)_{n=0}^{\infty}$ be sequences. Then we write $a_{n} \sim b_{n}$ as $n \rightarrow \infty$ to mean

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=1
$$

We say a_{n} and b_{n} are asymptotically equal.
Often, you'll find $a_{n} \sim c \rho^{n} \operatorname{Poly}(n)$.
Definition. Let $\left(a_{n}\right)_{n=0}^{\infty},\left(b_{n}\right)_{n=0}^{\infty}$ be sequences. Then we write $a_{n} \bowtie b_{n}$ as $n \rightarrow \infty$ to mean

$$
\limsup _{n \rightarrow \infty} a_{n}^{\frac{1}{n}}=\limsup _{n \rightarrow \infty} b_{n}^{\frac{1}{n}}
$$

and we say $\left(a_{n}\right)$ and $\left(b_{n}\right)$ have the same exponential growth.
Example. Say $a_{n}=\alpha^{n}(1+f(n))$ where $f(n) \geq 0$ and $f(n)$ grows strictly slower than any exponential i.e.

$$
\lim \frac{f(n)}{\beta^{n}} \rightarrow 0 \quad \forall \beta>0
$$

Then $a_{n} \bowtie \alpha^{n}$ since

$$
a_{n}^{\frac{1}{n}}=\alpha(1+f(n))^{\frac{1}{n}} \Rightarrow\left(\alpha^{n}\right)^{\frac{1}{n}}=\alpha
$$

Suppose $(1+f(n))^{\frac{1}{n}} \geq c>1$ infinitely often. Then $1+f(n) \geq c^{n}$ So

$$
\frac{1+f(n)}{c^{n}}>1
$$

Which is a contradiction. So

$$
\lim _{n \rightarrow \infty}(1+f(n))^{\frac{1}{n}}=1 \Rightarrow \limsup _{n \rightarrow \infty} a_{n}^{\frac{1}{n}}=\alpha=\limsup _{n \rightarrow \infty}\left(\alpha_{n}\right)^{\frac{1}{n}} \Rightarrow a_{n} \bowtie \alpha^{n}
$$

Definition. Let Ω be a connected open subset of \mathbb{C}. A function $f: \Omega \rightarrow f$ is analytic at a point $z_{0} \in \Omega$ if for some open disc centered at z_{0} and within $\Omega, f(a)$ is represented with a convergent power series. We say f is analytic in Ω if it is analytic at every $z_{0} \in \Omega$.

Definition. Let Ω be a connected open subset of \mathbb{C}. A function $f: \Omega \rightarrow \mathbb{C}$ is holomorphic at $z_{0} \in \Omega$ if

$$
\lim _{\delta \rightarrow 0} \frac{f\left(z_{0}+\delta\right)-f\left(z_{0}\right)}{\delta}
$$

exists independently of the path δ takes to 0 . This will be $f^{\prime}\left(z_{0}\right)$. f is holomorphic on Ω if it is holomorphic at every point of Ω.

Theorem. Let Ω be as described, and $f: \Omega \rightarrow \mathbb{C}$. Then f is holomorphic on Ω if and only if f is analytic on Ω. And if so, then f is smooth on Ω (i.e. all its derivatives exist).

Definition. Let Ω be a connected open subset of \mathbb{C}. Let $f: \Omega \rightarrow \mathbb{C}$ be analytic on Ω and let z_{0} be a point on the boundary of Ω. If there exists an analytic function g on a connected open set Ω^{\prime} such that $z_{0} \in \Omega^{\prime}$ and $f=g$ on the intersection $\Omega \cap \Omega^{\prime}$, then we say g is an analytic continuation of f.

Fig. 1

Theorem. The analytic continuation of an analytic function is unique.
Defintion. Let Ω be a connected open subset of \mathbb{C}, and $f: \Omega \rightarrow \mathbb{C}$ be analytic. A point z_{0} on the boundary of Ω is a singularity of f if f is not analytically continuable at z_{0}.

The only singularities we are going to care about are the ones on the circle of convergence of power series with nonnegative coefficients.

Theorem(Pringsheim's). Let $f(z)$ be analytic at zero with a series expansion

$$
f(z)=\sum_{n=0}^{\infty} f_{n} z^{n}
$$

Suppose each $f_{i} \geq 0$ and the series has radius of convergence $0<R<\infty$, Then $z=R$ is a singularity of $f(z)$ and no singularity with smaller norm exists.

Intuition. A real and positive x is no smaller than an x not on the real axis, but with the same norm.

Proof. The series has radius R and matches the function, so there are no singularities of norm $<R$. Suppose on the contrary that f is analytic at $R=z$. Then f is analytic in a disc of radius r centered at $z=R$. Choose $0<h<\frac{1}{3} r$ and consider the expansion of f around $R-h$

$$
f(z)=\sum_{m \geq 0} g_{m}\left(z-z_{0}\right)^{m}
$$

In the intersection of circles

$$
\sum_{n=0}^{\infty} f_{n} z^{n}=\sum_{m=0}^{\infty} g_{m}\left(z-z_{0}\right)^{m}
$$

pull out g_{m} by taking m derivatives at z_{0}, and get

$$
g_{m}=\sum_{n=0}^{\infty}\binom{n}{m} f_{n} z_{0}^{n-m}
$$

and so the g_{m} are also nonnegative.
Now $f(z)=\sum_{m \geq 0} g_{m}\left(z-z_{0}\right)^{m}$ converges at $R+h$ by choice of h. So

$$
f(R+h)=\sum_{m=0}^{\infty}\left(\sum_{n=0}^{\infty}\binom{n}{m} f_{n} z_{0}^{n-m}\right)(2 h)^{m}
$$

this is a convergent series with all nonnegative terms.

We can rearrange to get

$$
\begin{gathered}
f(R+h)=\sum_{n=0}^{\infty} f_{n}\left(\sum_{m=0}^{\infty}\binom{n}{m} z_{0}^{n-m}(2 h)^{m}\right) \\
=\sum_{n=0}^{\infty} f_{n}\left(z_{0}+2 h\right)^{n}
\end{gathered}
$$

where $z_{0}+2 h=R+h$, contradicting that the series has radius of convergence of R.

Definition. Singularities on the boundary of the disc of convergence of a power series are called dominant singularities.

Example. Consider the binary rooted tree with distinct left and right childre from the first day. $\mathcal{T}=\mathcal{E}+\mathcal{Z} \times \mathcal{Z}^{2}$.
So $T(x)=1+x T(x)^{2}$, so $T(x)=\frac{1-\sqrt{1-4 x}}{2 x}$.
What is a dominant singularity? At $x=\frac{1}{4}$, when the square root is about to be negative. By Pringsheim, we only need to look at real possible x values. So $x=\frac{1}{4}$ is a real dominant singularity and $\frac{1}{4}$ is the radius of convergence.

The First Principle of Combinatorial Asymptotics

The radius of convergence, or position of dominant singularity on $\mathbb{R}_{>0}$, determines the exponential growth.

This is encapsulated in the following:
Proposition. Let $f(z)$ be analytic at 0 with the series expansion $f(z)=\sum_{n=0}^{\infty} f_{n} z^{n}$, with the $f_{i} \geq 0$ and radius of convergence $0<R<\infty$. Then $f_{n} \bowtie\left(\frac{1}{r}\right)^{n}$.
Proof. By definition of radius of convergence, $\forall \epsilon>0, \sum_{n=0}^{\infty} f_{n}(R-\epsilon)^{n}$ converges. So in particular, $f_{n}(R-\epsilon)^{n} \rightarrow 0$ as $n \rightarrow \infty$, and in particular $f_{n}(R-\epsilon)^{n}<1$ for n sufficiently large.

$$
f_{n}<\frac{1}{(R-\epsilon)^{n}}
$$

for n sufficiently large. Thus,

$$
f_{n}^{\frac{1}{n}}<\frac{1}{R-\epsilon}
$$

In the other direction, $f_{n}(R+\epsilon)^{n}$ is unbounded since $\sum f_{n}(R+\epsilon)^{n}$ is strictly outside the radius of convergence. So

$$
\begin{gathered}
f_{n}(R+\epsilon)^{n}>1 \\
f_{n}>\frac{1}{(R+\epsilon)^{n}} \\
f_{n}^{\frac{1}{n}}>\frac{1}{R+\epsilon}
\end{gathered}
$$

infinitely often. Therefore,

$$
\lim \sup f_{n}^{\frac{1}{n}}=\frac{1}{R+\epsilon}
$$

so

$$
f_{n} \bowtie\left(\frac{1}{R}\right)^{n}
$$

Example. Take \mathcal{T} from the previous example. $T(x)=\frac{1-\sqrt{1-4 x}}{2 x}$.
The dominant singularity on $\mathbb{R}_{>0}$ is $x=\frac{1}{4}$, so $t_{n} \bowtie 4^{n}$.
References. Flajolet and Sedgewick, Analytic Combinatorics, Cambridge (2009). IV.2, IV.3.

